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Abstract

Earlier papers by Murty [16] and Fathi [7] have exhibited
classes of linear complementarity problems for which the computational
effort (number of pivot steps) required to solve them by Lemke's
algorithm [13] or Murty's algorithm [15] grows exponentially with the
problem size (number of variables). In this paper we consider the
sequences of complementary bases that arise as these problems are
solved by the aforementioned algorithms. There is a natural correspond-
ence between these bases and binary n-vectors through which the basis
sequences can be identified with particular hamiltonian paths on the
unit n-cube and with the binary Gray code representations of the

integers from 0 to 20
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OBSERVATIONS ON A CLASS OF NASTY
LINEAR COMPLEMENTARITY PROBLEMS

by
Richard W. Cottle

1. Introduction.

From the theoretical standpoint, the "complementary pivot methods"
of Lemke [13], Murty [15], and Dantzig-Cottle [5], will always solve
the nondegenerate linear complementarity problem (g, M) of order n :

find w and z satisfying

when M €RV" s a P-matrix and q € R" s arbitrary. Empirically

it has been found that these methods work quite efficiently, often solv-

ing the problem by roughly 0(n) pivots. Encouraging though this may

be, it need not always be the case. Indeed, Murty [16] and Fathi [7]

have each exhibited classes of linear complementarity problems (indexed

by the order, n ) requiring either 2" or 2" <1 pivots depending

on which of two complementary pivot methods is used to obtain the solution.
These contributions to the subject of computational complexity of

algorithms deal with specific numerical problems (q, M) . In Murty's

paper, M is a lower triangular P-matrix with positive entries below
the main diagonal, and hence it is necessarily nonsymmetric. In Fathi's

paper, M is symmetric, positive definite and positive. As such, these
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matrices (to be specified more precisely in Section 4) look rather nice
insofar as the constructive existence theory is concerned.

The primary purpose of this paper is to point out that there is
something quite special about the sequences of bases through which the
algorithms run when applied to the numerical examples of Murty and Fathi.
A secondary purpose of the paper is to characterize the subclass of P-
matrices and vectors q for which a particular pivoting sequence is
followed. The necessary and sufficient conditions given here are ex-
pressed in terms of determinantal inequalities; other equivalent formu-
lations are possible.

The plan of the paper is the following. In Section 2, we intro-
duce some notation and background especially relevant to the main point.
In Section 3, we explore some properties of a particular function related
to the special pivot sequence arising in the Murty-Fathi examples. In
Section 4 we analyze the aforementioned examples and show that they do
indeed give rise to the pivot sequence we have in mind. In Section 5, -

we establish the relationship between the data and the pivot sequence

followed by the complementary pivot methods of Lemke and Murty. Finally,

in Section 6, we mention some interesting related literature.

2=

e -.' i Sl oy St s e T e gt




2. Notation and background.

For the sake of brevity, we omit most of the customary preliminary
material and refer the reader to Murty [16] and Fathi [7] for the stan-
dard concepts and notations of linear complementarity theory. To some
extent, we rely on these papers for accounts of the "complementary pivot
methods" to be discussed here,

However, there is one item so essential to our development that it

must be reviewed. Obviously, the equation

Iw-M=q (1)

is central to the study of (q, M) . One is interested in complementary

bases in the matrix I, -M] . These are nonsingular matrices

B = [8-1’ e B-n] such that

.e ] - . .=l" --.,n’ 2
B.; € (15 <M 5}, J (2)

i.e., the j-th column of B is either the j-th column of I or the

Jth column of -M . Such matrices give rise to complementary basic

solutions of (1). A nonnegative complementary basic solution of (1)
solves (q, M) .

Given a complementary basis B , the set

pos B = {q: q = Bv , v > 0}

is called the complementary cone relative to B .

Again, suppose a complementary basis B is given. To this basis

e




we associate a binary row vector c¢ € R" as follows. For

Ji= A s N Tet

n
—

0 i€ B =1,
c. = J J (3)

J
g

"
1
=

When M € P (the class of matrices with positive principal minors),
we must have I.‘j # -M.j » S0 there is absolutely no ambiguity in de-

fining c; as in (3). In other cases, one could use the definition

o
-—de
-
je~)
n

.= [I, -M] .
c. = *J ]'J (3')

= [1, -M]

-
-te
-+
(v~}
|

cn+j

According to (3), the vector corresponding to the identity matrix I
s (0, ..., 0) €R",

As is well known, there are 2" binary vectors in R" » and when

T! MEP (or, more generally, when M is nondegenerate) there are ol

1 complementary bases (counting multiplicities, if necessary). It is also
well known that binary n-vectors can be used as a way of representing the
decimal integers from 0 to 27 . The binary -- i.e., base-2 --
representation comes to mind immediately. One could, therefore, use the
i set of all binary n-vectors appropriately ordered as a way of counting

| from 0 to 2"-1, and by the correspondence (3) one could use the
complementary bases in [I, -M] for this purpose. Taking the latter
scheme and, in turn, its association with complementary pivot methods

into account, one wants consecutive integers to be represented by
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algorithmically adjacent bases. From the standpoint of the methods

under consideration here, this means the complementary bases representing
consecutive integers should differ by exactly one column - or, equiva-
lently, that their binary representations c should differ in exactly
one component. This being so, the process of counting from 0 to

2".1 with base-2 vectors cannot correspond to an execution of either

of these complementary pivot methods. For example, the base-2 repre-

sentations of 211 and 2h-1

differ in all n components.

The feature of adjacent complementary bases we wish to capture
with binary n-vectors is called the "unit distance property", a term
used in coding theory and switching theory. See [1]. One code having
the unit distance property is known as Gray code - after F. Gray 1] -

also known as the reflected binary code.

Gray code can be described in various ways. For example, given

the integer
n
vE {0 Vs seup 2 =1}
one can first write down its base-2 representation*

b (3] = fbyy wvey By (4)

where

n
ve g ij"'j L (5)
j=1

*At“this point, our notation is somewhat unconventional, but it serves
our purpose well,

B
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Then the Gray code representation for v 1is the binary n-vector |
n
g"(v) = (g5 +ovs )
whose components satisfy the relations

g, =b
1 1 (6)

g; = by + bi-] (mod 2) ., 152, coci B .

Table 1 below contrasts the base-2 and Gray codes for n =3 . (The

last column of the Table will be discussed a little later.) |

v |Base-2 Code b3(v) Gray Code g3(v) k3(v)
0 (o, 0, 0) (o, 0, 0) 3
1 (0, 0, 1) (0, 0, 1) 2
2 (0, 1, 0) (0, 1, 1) 3
3 (0, 1, 1) {d, 1, 0} 1
4 (1, 0, 0) (1, 1, 0) 3
5 (1, 6, 1) il Ve B) 2
6 i, 1, 0) (1, 8, 1) 3
7 1, 1. 0) (1, 0, 0) -
Table 1.

The Gray code representation of the integers 0, 1, ..., 7 as binary

3-vectors illustrates two general properties:
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g"(v)
g"(v)

In the case n = 3 , we can depict the sequence g"(v) as a

hamiltonian path on the unit cube in R3 .

l 7
]
A
[} Y
6 €t
1 SR 3 L2
7/
Y /
7 N
7/
7
7).~
4
1
Figure 1.
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Another feature of the sequence g3(v) illustrated in Table 1
is that every second 3-vector is obtained from its predecessor by chang-
ing the third (i.e., last) component. Again, this feature is true in
general.

Our reason for devoting so much attention to the Gray code is to

provide some background for the following assertion which is in fact the

central point of the paper: The complementary bases which arise in the

numerical examples of Murty and Fathi correspond (via (3)) to counting

in Gray code from 0 to ™

b | After proving this assertion, we consider in Section 5 the general
question of what conditions on the data must be fulfilled to make the
two complementary pivot methods follow a specified pivot sequence. Once
this is done, the results of Section 4 prove the existence of data for
which these conditions are satisfied relative to the specific pivot se-
quence spelled out there.

To facilitate the work of Section 4, we explore in Section 3 some

i ! properties of a function kn: 403 [ RS 2".2} - s A e e e

Definition. For all decimal integers v satisfying 0 < v 5_2"-2 <
let kn(v) denote the index of the one component in which gn(v) and

g"(v+1) differ.

Thus, using the abbreviation k = kn(v) we have

B
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gp(v) *+ gelv + 1) =1
gg(v)+g§(v+1) 0 (mod2), Jj#k.

In terms of complementary bases, the knowledge of kn tells us for
each v=0,1, ..., 2"-2 which column of a given basis is the next to
be changed.

It is very easy to verify that for n =2 we have

v ” 0 | 1 I 2
{ oo |2 [ 1| 2
Table 2.

The function k., has already been displayed in Table 1. Notice that the

3
corresponding sequences

are palindromes.

e
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3. Properties of the function kn -
A comparison of k3 with kz shows an interesting recursive

property of kn .
Proposition 1. For all n >3 and 0 < v < 2"-2

n if 2u
k (v) = (8)
kn_](u) if 2u + 1.

<
n

<
]

Proof. Let b"(v) = (b](v), ..., b2(v)) and g"(v) = (g7(), ...y gn(v))
be the base-2 and Gray code representations of v , respectively. There
are obviously two cases to be considered.

Case 1. v =2u (i.e., v is even). This case is trivial since

b:(v) =0 if and only if v is even. It follows that b:(v +1) =1
and bg(v) = bg(v +1) for j =1, ..., n-1 . Hence by (6),

gg(v) = gg(v + 1) for § =1y wees 0-1 and g:(v) # g:(v +1) .
This means kn(v) =n.

Case 2. v =2u+1 (i.e., v isodd). We have br(v) =1 and

b:(v +1) =0 . Moreover,

n e
bn-1(“ +1) = bn_](v) +1 (mod 2) .
By definition,
n n n n
9o(v) = b (v) + b _1(v) =1 +b ,(v) (mod 2)
and
T,




g:(v +1) = b:(v +1) + b:_1(v +1) =0+ bg_1(v) +1 (mod 2) .

Hence g:(v) g:(v + 1) which implies kn(v) <

Since

n
2u+tl= 3

n n-j n :
2 bj(v)z and bn(v) 1

n-1
2p=£

n n-j
& bj(v)Z

n-1 ¥
M (v)2"-1-3
j=1 J

which means

e VRN (gl P o T (10 R N O )

On the other hand

n
v+1=2(pu+1)= ¢
J=1

bg(v + 1)2"d

n=1
p+1l= g5 pMNy 4+ 1)2™1-d
=1




which means

Ll TS T

(B (w + 1), vees BI3(w + 1))

(b?(v bl s b:_-l(v +1)) .

Now
g"(v) = (b](v), by(v) + B(v)s <uuy BA(V) +B] (V)  (mod 2) |
g"(v+1) = (b](v#1), by(vH1) + bJ(v#1), ..., BI(v#1) + b7 (v#1))
(mod 2)
whereas
") = (B](v), bp(v) + BT(V), ey BN (V) + 61 ,(9))  (mod 2)
! "1 (u1) = (b7 (u41), bY(ue1) + by(v41), wues BT L (wH1) + b7 ,(v41))

(mod 2) .

It is now clear that kn(v) = kn_1(u) il

| There is no problem about evaluating kn(v) when v is even.

For odd valyes of v we can describe the kn(v) as follows.

&)=




Proposition 2. If n>2 and 0 < v < 2" - 2 s an odd number, then
kn(v) =n-t
where t 1is smallest positive integer such that

v (25 < 1) = ztut x even.

e

Proof. The assertion is trivial when n =2 and v =1 ., Suppose
n >3, and write v = 2u] +1 ., If M is even, the assertion is true

with t =1 by Proposition 1. If My is odd then Wy = 2u2 +1 and

v = 22

uy + (22 -1) . If My is even, we have

kn(\’) = kn_" (u'l) = kn_z(uZ) =n-2 .

So t=2. If My is odd, the process can be repeated until we reach

an expression of the form
ve=2t 4 (2t o)

for which Mg is even and minimal. In this case we have by repeated

application of Proposition 1
ky(0) = Ky g) = Ky pluy) = vee =k o(u) =n -t

and this is the assertion. 0O

=13-




There is a fast way to build up kn from its predecessor kn-l .

Proposition 3. For all n > 3

kpp (V) + 1 # o0<ve2™ .2 (9)
£ (10)
svs®.2. W)

ky(v) = {1 if v=2"

k(v -2"N) 41 df 2™

Moreover,
kvl sk fu e @Y a1 P oy pf (12)

and

1 1

k(2 30 g = (2T

- " ~=1+v) if 0<v 5_2"’

ol 1 . (]3)
Proof. Al1 these claims are easily checked when n = 3 . Assume, in-
ductively, the statements are true for all m such that 3 <m<n -1,

n-1

First, suppose 0 < v <2 -2 . A1l such v belong to the do-

main of kn-] . If v 1is even, then of course
kn(v) =n=(n=-1)+1-= kn_](v) +1 .
If v 1is odd, there exists an integer t as in Proposition 2 such that

kn(v)=n-t=(n-1-t)+1=k v) %1 ..

n~1(

=)l
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This proves (9).
_ ,n=1 P n-2
Now let v = 2 -1. Then v=2u+1 where p =2 -1.

It follows from Proposition 2 that

» k@ - =n-(n-1) =0

which proves (10).

1 2 |

Next, suppose ah <v<2 -2. For all such numbers, we can

write 1
1
; v=2"1 47 where 05_352"']-2. 1

This means Vv belongs to the domain of knoy ¢ If v s even, we have
k,(v) =n . But in this case v =v - 2" s also even, whence

k,.q(® =n-1. This proves (11) for all even v . If v is odd,

n-2 2n-1

we may write v = 2u + 1 where 2 <ux< - 2 . Accordingly, we

have

n-2

p=2"%+7% where oi‘ifJ-z.

By Proposition 1

kn(\’) = kn_1 (U)

k() = Ky (D)

and by induction,

-15-
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kn_'l(U) 2 kn_] (-U—) .

Putting these three equations together we get (12). Using (12) and

induction on (11) we get
i - — P n-1
kn(v) = kn(v) = kn_1 (v) +1 = kn_1(v =277) +1

which gives (11) for n .

Finally, equation (13) asserts that
n n
k,(0), k (1), «ous k(27 - 3), k(2" - 2) (14)

is a palindrome. This has already been seen for n = 2 (and n=3)

and since each sequence (14) is obtained from its predecessor
n-1 n-1
kn_](O), kn_](]), ceey kn_](z - 3), kn-1(2 - 2)
by putting the number n at the beginning and end of the sequence as

well as between every consecutive pair of its terms, it follows (by

induction) that (14) is indeed a palindrome. O
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4, Application to specific numerical examples.

In this section we aim to prove that solving the specific linear
complementarity problems of Murty and Fathi by the complementary pivot
methods of Lemke and Murty (called complementary pivot methods I and II,
respectively) gives rise to a special pivot sequence, namely the one

corresponding to the function kn studied in Section 3.

4.1 Murty's examples.

To exhibit exponential computational requirements with complemen-

tary pivot method I, Murty defines q = q(n) and M = M(n) as follows:

0 1f 1 <3
n a
qy(n) =- ¢ 29 ms(n) = 41 if =3 (15)
j=n+1-i
2 if 1>

Remark 1. For all n > 2 , the matrix M(n) 1is lower triangular and has
a positive diagonal. It is therefore trivial to verify that M(n) € P .
A significant fact about problems of this sort is that there is a natural
(greedy) way to solve (q, M) for any q . For i=1, ..., n sequen-

tially define
z, = max {0, -(q1 + jfi mijzj)/mii} " (16)
The solution to (q, M) 1is then q + M;, z . For all of the problems

(q(n), M(n)) given by (15), it is immediate that ;1 =2" and

z1 =0 V&g caes N s

«17=-
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Remark 2. According to the definition (15)
g, (n) = (M) L 2y . cate™ - 1)
This fact comes into play later on.

Remark 3. Murty solves (q(3), M(3)) where

-8 1 00
q(3) = |-12 M(3) =12 1 0
-14 202

in complete detail by complementary pivot method I. After modifying
this algorithm to its equivalent parametric (principal pivoting) form

(see [15], [7], [13]) one can see that the binary representations

(via (3)) of the 8 = 23 bases visited are precisely the Gray code

representations of the numbers 0, 1, ..., 7 . One can also see that

the pivot sequence is k3 , that is 3, 2, 3, 1, 3, 2, 3 . Analogous
statements for (q(2), M(2)) are even easier to check, and in this

case one can draw a figure which nicely illustrates the solution process.

Our goal now is to generalize the observations made in Remark 3

to (q(n), M(n)) for all n > 3 . Formally, we have

Theorem 1. The parametric form of complementary pivot method I applied
to (q(n), M(n)) as defined in (15) will generate the pivot sequence
| k(0), k (1) ooy k(27 - 2)

Proof. The assertion is true for n =2 (as well as n =3 ), Assume

-18-




it is true for n -1 > 2 and consider the problem (q(n), M(n)) .
An additional, easily-proved fact is that when n = 2 , the cri-
0 | 2 _ g
tical values of z, are 2z, = 0, Z, = 2 zy = 4 , and z, 6 .
In other words, z; = 2v . (The same can be shown when n = 3 .)
We adopt this as another part of the inductive hypothesis.

n+l

For (q(n), M(n)) 1let Eb =2 -2=2(2"-1) . Then define

e(n) = (1, ..., NT e
and

q(n) = q(n) + Ebe(n) ”

It is very easy to verify that

5 2".p
q(n) = |_ A (17)
\Q(n'])

The task is now to solve (Eln)-zoe(n), M(n)) for all z, € [0, Eb] .

To do this, we write
[0, 2™1.2] = [0, 2"-2] U (2"-2, 2") U [2", 2" 2]

Now obviously for all 2, € [0, 2"-2] we must have z; =0 in
the solution of (EYn)-zoe(n), M(n)) . Looking at the structure of

1 0 ]
M(n) =
[Ze(n-l) M(n-1)

-19-

o e b e R AT

O



and taking note of (17), we see that for z4 € [o, 2"-2] we must be
solving (q(n-1), M(n-1) by the same method. By the inductive hypo-

thesis we obtain the pivot sequence kn-1(“) for v=20, 1V, coos 2""l -2,
For (q(n), M(n)) , this (partial) pivot sequence translates by (9) into
k() =k (v +1 for v=0,1,..,2"" -2,

Next we note that for all z, € [2"']-2, 2"_2] the solution of
(Eln)-zoe(n), M(n)) must have z; > 0 and Wy = 0. (See Remark 1.) .
By making Z, basic in place of LI we have a pivot sequence which
agrees with kn up to v = 2"'] - 1. For, by (10) kn(Z"']-l) =¥ .
; Thus,

Pl L B O T

; n-1
corresponds to the complementary basis 82 . This is the complemen-

tary basis for (Eln)-zoe(n), M(n)) for all 2, € (2"']-2, 2") .

We now want to solve the problem for z4 € [2", 2"+1-2] . Since
z, > 0 and Wy = q1(n) -z5t2 = 0 when zg is in this interval,

we have

- (2" - 2) (18)

T

and substituting for z; via (18), the values of Wos sees Wos 2o,

sees zn must solve

(@(n-1) + 2(z5-2"+2)e(n-1) - zpe(n-1), M(n-1))

-20-
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1

for all 2z, € 4 2t -2] . This can be written as

(3(n-1) + 2e(n-1) - (z""‘-z-zo)e(n-w), M(n-1)) . (19)

Notice that for z. € [2", 2"+1-2] we have

0

L T e R B
So (19) is just
(q(n-1) + 2e(n-1) - ze(n-1), M(n-1)) , 2" -2>¢>0 . (20)

In solving (20), we get the same sequence of complementary bases as
in solving (q(n-1) - zoe(n-l), M(n-1)) for z4 € [0, 2"-2] except
that they occur in reverse order. By (13) and the inductive hypothesis ;

we obtain the remainder of the sequence kn N

This argument proves Murty's result: There are 2".1 basis changes
when the parametric form of complementary pivot method I is applied to
(q(n), M(n)) . It also shows that the complementary bases encountered
correspond to the Gray code representations of the numbers v =0, 1,
ey e . As noted by Murty, the critical values of the parameter

z, are of the form 2v for v =0, 1, ..., 2"-1 and the half line

0
of points q(n) - zoe(n) where 0 < z, 5_2n+1-2 passes through all

2" complementary cones.

«2]-




Murty applies complementary pivot method II to the problem
(-e(n), M(n)) .

Theorem 2. Complementary pivot method II applied to (-e(n), M(n))
with M(n) as defined in (15) will generate the pivot sequence
n
-‘ kn(O), kn(])’ ey kn(z -2) .
Proof. This is easily verified in the case where n =2 . Now suppose

it is true for n-1>2 ., We have

! -1 1 0
F | -e(n) = [ ] and M(n) = [ ] )
‘ -e(n-1) 2e(n-1) M(n-1)

By the way the method is defined, we must have 2, = 0 (non basic)
until (-e(n-1), M(n-1)) 1is solved. By the inductive hypothesis,

this generates the pivot sequence kn_1(v) far v= 0, T, cous 1.5

At the termination of the latter solution process we have - in terms
of the problem (-e(n), M(n)) - the variable z, basic and all other
z; non basic. The next variable to become basic is Z; 5 80 by Propo-
sition 3 we have the pivot sequence kn(v) for 0 <wv 5-2n-1 . Now
with Z and z, basic and z; non basic for 3 < i < n we must
once again have to solve the problem (-e(n-1), M(n-1)) . (We remark
that W, will never become basic again.) By the inductive hypothesis,

"'1-2 . Since this

this requires the sequence kn_](v) for O<vwxi
sequence is a palindrome, it follows that the entire pivot sequence

for solving (-e(n), M(n)) is just ky - O

Here too we get a Sequence of 2" pivots. Moreover, the comple-

k =22
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mentary bases used correspond to the Gray-code representations of the

numbers 0, 1, ..., 2"-1 .

4.2 Fathi's examples.

yg The main point of Fathi's paper is that there are symmetric P-
matrices (which of course, must therefore be positive definite) for |
which the same computational effort is required as in the solution of

Murty's examples by the same methods. Indeed, Fathi constructs a

special matrix out of Murty's matrix M(n) . Before defining this
matrix, we wish to call the reader's attention to the fact that there
are some significant notational differences between the following
development and what is to be found in Fathi's paper. So, to begin

with, let

F(n): = M(n)M(n)T . (21)

This matrix is obviously symmetric and positive definite. Furthermore,

it has the following suggestive structure:

1 2&("-1)T (22)
2e(n-1) F(n-1) + 4E(n-1)

F(n) =

where

e(n)e(n)T .

E(n):




Fathi's analysis (and ours) makes use of two related matrices, namely

F(n): = F(n) + 4E(n) (23)
and
F(n): = F(n) - 46(n) (24)
where
6(n): = [0, e(n)e(n-1)T1 . (25)

We notice at once that F(n-1) 1is a principal submatrix of F(n) .

For reasons of simplicity, we reverse the order of the complementary
pivot methods considered and Took at the solution of Fathi's problem
(-e(n), F(n)) by means of complementary pivot method II.

Examining Fathi's solution of (-e(3), F(3)) we see that comple-
mentary pivot method II generates the pivot sequence k3 . One can
easily verify the analogous statement (-e(2), F(2)) . In Theorem 3
we prove this in general. The proof (naturallyan inductive one) makes
critical use of an observation of Fathi's. We state this without proof
as
Lemma 1. For all n > 2 , the pivot sequences generated by complementary
pivot method II in the solution of (-e(n), F(n)) , (-e(n), F(n)) ,

and (-e(n), F(n)) are the same.

Now we have
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Theorem 3. Complementary pivot method II applied to (-e(n), F(n))

will generate the pivot sequence kn(O), i ses kn(Z"-Z) .

Proof. The statement is true for n = 2 , so assume it is true for
n-1>2. Tosolve (-e(n), F(n)) one must first solve the sub-
problem (-e(n-1), F(n-1)) before z; can be made basic. By the

inductive hypothesis and Lemma 1 we see that the solution of

(-e(n), F(n)) by complementary pivot method II begins with 1

n']_z

pivots given by kn(v) for 0<v<2 . The next pivot must

be the exchange of W, and Zy . Hence we have agreement with
n-1 : +

kn(Z -1) . When this stage is reached, Z2ys Zys W3s eees W

are basic variables. The corresponding tableau has the form

n
z, 3 5 =2 gi sesy 32
z, -1 -2 1 =2 oo 22
Wa -1 -2 2
. . . . F(n_z)
W, -1 -2 2

According to the rules of the method, we must solve the subproblem cor-
responding to the indices 2, 3, ..., n . This is easily recognized
as (-e(n-1), F(n-1)) . By the inductive hypothesis and Lemma 1, we see

that pivot sequence for this part of the problem is just the last

"1, e v 5_2"-2 ¢

1 terms of the sequence k, , i.e., kn(v) for 2"

After these pivots, the problem is solved. Hence complementary pivot

=25«
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method II applied to (-e(n), F(n)) generates the pivot sequence
k,(v) for 0<v<2'2. O

To obtain a computational complexity result for complementary
pivot method I, Fathi uses the matrix we have called F(n) , but instead
of q(n) as defined in (15), he considers a more general class of
vectors. The central idea in this instance is to show the existence
of a 1ine L(n) which passes through all 2" complementary cones de-
fined relative to F(n) .

The construction goes as follows. Let p(n) € R" satisfy

0 < Fn(n) < vee < E](n) . (26)

Note that p(n) € int R2 . For purposes of the proof, it would suffice

to let Bh(n) equal 0 1in (26). The desired line is

L(n): = {p(n) - zoe(n): z, €R} . (27)

A figure corresponding to the parametric linear complementarity
problem (p(2)-zoe(2), F(2)) shows that L(2) passes through the four
complementary cones defined relative to F(2) . It also shows that if
Eb is suitably large and positive, then p(2): = p(2) - Ebe(Z) lies

in the interior of pos [-F_], 1.2] . Moreover, the 1ine segment be-

TR

tween p(2) and p(2) meets all four complementary cones relative to

; F(2) . Indeed, solving the linear complementarity problem (p(2), F(2))

by complementary pivot method I in parametric form yields the pivot

sequence k2 #

-26-
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As in the previously considered cases, this fact points to an in-
ductive proof of the natural generalization of this observation. We
shall not give a formal proof of the following result, but simply
remark that using the obviously true case of n =2 as an inductive

hypothesis with Fathi's own inductive proof of his Theorem 3.4 we have

Theorem 4. If p(n) € L(n} Ties in the interior of the complementary
cone pos [-F.1, 1.2, ety I-n] » then the parametric version of comple-
mentary pivot method I applied to (p(n), F(n)) will generate the

pivot sequence k_(0), ..., kn(2n~2) .

Thus, the two complementary pivot methods applied to the linear
complementarity problems set down by Murty and Fathi give rise to comple-
mentary bases which correspond to the Gray-code representations of the

intEQEY‘S 0, 1’ LR ] Zn-] .




5. Conditions for achieving a prescribed pivot sequence.

In this section, we are concerned with the relationship between
the data q and M of a linear complementarity problem and the pivot
sequence followed in the solution of (q, M) by complementary pivot
methods I and II.

Throughout this section we assume that M € R"" s a P-matrix.

We know then that for all q € R" , the problem (q, M) has a unique

solution [17] and either of the aforementioned methods will find it.
The "results" of this section serve two purposes. First, they 1
fﬁ provide a brief review of two complementary pivot methods under con-
sideration here. (This may be helpful for those not already conversant
with them.) Second, and no less important, they suggest the possibility
of constructing other nasty problems, about which more will be said in
Section 6.
i Both of these complementary pivot methods use an algebraic opera-

tion know as principal pivoting. In general (i.e., for M not neces-

| sarily in P ), if m. s # 0 , the principal pivotal transform of M ob-

tained by pivoting on mes is the matrix M with elements m%j

satisfying the rules

s o
Mii = My
Nea :
Myg = =MyMyy i
B

| Mg = MyiMi
f o, Ml JEipe,

et~ g T Teglegtp o

A salient point in the present discussion is a result due to Tucker [19]




which states that if M € P then so is every principal pivots1 trans-
form M . Thus the assumption that M € P guarantees that all the

indicated pivot operations are possible.

5.1 Complementary pivot method I (Lemke [13]).

In the present circumstances, Lemke's method can be put into para-
metric form as follows. Given a problem (q, M) of order n with

q # 0 (for nontriviality) define the positive real number

zy = - min q

1<izn !

and let e = (1, ..., I)T €R" . Then

(Recall what was done in the proof of Theorem 1.) To solve (q, M)
we may consider the parametric linear complementarity problem

(q-zoe, M) , 0<zy=<z (28)
For all z, € [0, Eb] , the problem (Elzoe, M) has a unique solution.
For z5 = 0 , the solution is obvious. What we want is the solution for
z, = Eb . This can be thought of as the homotopic approach to the
problem.

As z; runs from O to 2z, , the vector q - z,e passes through

several complementary cones along the line segment from q to q .

The critical values zg of z, correspond to points where this line

-29-
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segment meets the boundaries of the complementary cones. For example,
= 0 is the largest value for which q - z,e € pos B0 where

B0 =1 . Thus zg = 0 1is a critical value of zg - For any larger
value of 2 » q - zpe belongs to a different complementary cone.

In the nondegenerate case, this cone is uniquely determined. So, under
this assumption, for the critical value zg s there will be a unique

index k(0) such that
(-a - de)k(o) =0. (29)

In the degenerate case, several components of q - zge may vanish.
One can make the choice unique and the method finite by using a least-
index rule [3]. We shall say more about this later; for the moment we
retain the nondegeneracy assumption.

According to (29), the line segment from q to q first enters

the complementary cone pos Bl where

1
B = [I.], ceey I'k(O)-]’ -M-k(O)' I'k(O)'ﬂ’ eoey I.n] .

The process then continues after the system is put into canonical form
with respect to the complementary basis B] . This corresponds to a

principal pivot on mk(O),k(o) . Equivalently, we take the equation

Iw-Mz=q-~ ze

and multiply through by (B])'1 to obtain the up-dated system. We

must next determine the critical value ZL s that is, the largest value

=30




of z, for which q - zpe € pos B] . However, in this and all sub-
sequent stages, care must be taken to make sure that the next critical
value does not exceed z, . In particular if 2g 5%y < zg+] , then

q € pos BY and the process stops as soon as the easily found solution

of (Elibe, M) = (q, M) is written down.

Suppose the solution process requires exactly & pivots (basis
changes). This means sequences of & + 1 complementary bases
BO, B], csiss B2 and critical values zg, zé, soiely zé are determined
in the manner sketched above. Each basis is obtained from its prede-
cessor by a simple column change. For v =10, 1, ..., 2=1 Tlet k(v)

denote the index of the column in B’ to be exchanged. Thus

v+l - v
Bok(v) = Tokv)® Mek(v) M Buk(v)!
(30)
vl _ v -
B-j = B'j ’ j#k(v) .

1f we have B0 = 1 , and we know the pivot sequence (function)

k(0), k(1), ..., k(2=1) , then we know all the complementary bases
used in the process.

What we seek is the connection between the data of (q, M) and a
given pivot sequence k . The question is: When will complementary
pivot method I (in parametric form) generate a particular sequence of
pivots?

This question has an obvious answer in terms of some determinantal
inequalities. To facilitate their expression, we introduce the following
notation. Suppose A is an mxn matrix, b 1is an m-vector, and

k€ {1, «e., n} . Then
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A(k; b): - [A.]s ceey A'k-" bt A'k"’]’ coey A'ﬂ]

is just the matrix A but with b in place of A_k . Note that if
m=n and A is nonsingular, then by Cramer's rule for solving the

linear algebraic system Ax = b we have

X, = det A(k; b)/det A, k=1, ..., n.

Concerned as we are with complementary bases relative to [I, -M]

where M € P , it should be clear that given such a basis, B , its
determinant is positive or negative according to whether B contains
an even or odd number of columns of -M . Moreover, given B0 =1
and a pivot sequence k(0), ..., k(2-1) , the complementary bases B
it generates will contain an even or odd number of columns from -M

according to whether v is even or odd. Thus
(<1)" det B >0, 0<v<2e.
We use this fact in the proof of the theorem below.

Theorem 5. If M € P, and the solution of (q, M) by (the parametric
form of) complementary pivot method I generates the pivot sequence
k(0), ..., k(2-1) and corresponding complementary bases Bo, sees g* >

then for v =10, ..., 21




T

(i) (1) det B(k(v); e) > 0 ;

(i) (-1)" det B (k(v); g) <0 3

(1i1) det B(k(v); @) . pyp {det 8Y(4; q)

det B'(k(v); e) i<j<n ldet B"(j; e)

(-1)Vdet BY(j; e) > 0}

and for v = 2

(iv) either
max (-1)%det B*(j; e) <0
1<j<n
or else there exists an index k(%) for which
(-1)"det B*(k(2); e) > 0 , (iii) holds for v = ¢ and
(-1)*det B(k(2); q) > 0 .

Conversely, if (i) - (iv) hold and for all z4 € [0, Eb] there are at
most n'+ 1 2zero components in the complementary basic solution to

(q - zge, M) , then the sequence of pivots must be given by the integers
k(0)y ooy k(2-1) .

Proof. Suppose the pivot sequence k(0), ..., k(2=1) is generated.

Then for each v =0, ..., 2=1 , the k(v)-th basic variable in the

v-th basic set of variables must decrease as z, increases. To simpli-

fy the notation, let k = k(v) , and let w: be the k-th basic vari-

able relative to the v-th basis BY . Then




L Bwv V.
‘: F(k)= ((BV)'](_e))k . det B (k, -g) PR

det B

f Since ME P , we have (-1)"det B” > 0 , the inequality (i) now follows. ﬁ

s

Next, consider the calculation of the critical value 23 . The

. up-dated right-hand side of the equation
Iw-Mz=q - ze

f~ is of the form

| B85 - 2,08° e .

The critical value 28 makes the k-th component of the vector in

(31) equal zero. Hence for each v =10, ..., 2-1

o (BT ()Y )+ T ) )

4
N (CE RIS (8" e)y(y)

@y -
TR

However, for these values of v , 25 5-Eb . The inequality (ii) now
1 follows from (i). The fact that 23 is the critical value for the BY
implies (iii).

When the last basis Bl is obtained, it must be the case that

either (8%)"'(-e) > 0 in which case




max det Bz(j; e) <0
1<j<n

2-1
0

to 26 or else (Bz)'](-e) has a negative component and it is possible

and none of the variables w§ decreases as z0 increases from z

to define a new critical value zé 2z

must exist an index k(%) for which (iii) holds and

as above. In particular, there

(-1)*det B*(k(2); q) > 0 .

Since (Bz)'l(ﬁ'- zpe) > 0 for all z, € [zé'], 23] , it is not neces-
sary to execute another pivot; hence k(&) 1is not part of the pivot
sequence.

The proof of the converse is clear form the nondegeneracy assump-
tion. Indeed the pivot sequence is uniquely determined by the inequali-

ties (i) - (iv). O

Remark. The necessary conditions stated in Theorem 5 are valid even
in the degenerate case, but in that situation, the statement of the
converse must be modified. If we use a least-index rule to choose the
pivot element, then (i) - (iv) are sufficient provided the k(v) are

the least integers (indices) for which those conditions hold.

5.2 Complementary pivot method II (Murty [15], [16]).

In [15] and [16], Murty develops variants of the so-called Bard

method* for solving (q, M) where M€ P . The Bard procedure is a

*This sort of method is related to an earlier one of Zoutendijk [20,
pp. 83-90].
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type of principal pivoting method which starts with the equation (1)

|
: and the complementary basis Bo =] . At the v-th step, one has a

complementary basis B" and the vector
-1
q’: = (8°) 'q .

If q” >0, the solution has been formed. Otherwise any index

k = k(v) such that q: < 0 1is chosen, a new complementary basis
BV+] is determined according to (30), and by principal pivoting (or

up-dating) one has the new vector

e —

v+l v+l ) -1 q

: = (B "
At this point, the steps outlined above are repeated.
It is known that in the degenerate case this arbitrary way of

selecting k(v) can lead to circling (alias cycling): the repetition

of a sequence of complementary bases. The essence of Murty's variant

is a specific rule for choosing k = k(v) which makes the method

T T NI T Y e

finite. In [14], he uses the rule
k(v) = arg min {k: q: < 0} (32)
whereas in [16] he uses the largest-index rule

k(v) = arg max {k: q: <0} . (33)

-36-
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Under (32) or (33) or indeed under any other specific rule, k becomes
a function of v and the data q and M .

So, complementary pivot method II is Bard's method with the largest
index pivot selection rule (33). It seems that Murty's motivation for
using (33) rather than (32) in [16] was to exhibit the required exponen-
tial computational effort of both complementary pivot methods with the
same matrix. Fathi [7] also uses (33) as part of complementary pivot
method II.

nxn

Theorem 6. If MEP NR , the solution of (q, M) by complementary

pivot method II generates the pivot sequence k(0), k(1), ..., k(z-1)

1 2

and corresponding complementary bases Bo, B, ..., B” if and only if

(1) for a¥l v =05 Wy vees =]

min (-1)"det B"(k; q) < 0
1<k<n
and

k(v) = arg max {k: (-1)"det B"(k; q) < 0} ;

u

(ii) for v =2

(-1)*det B%(k; q) >0, k=1, ..., n.

Moreover, the bound ¢ 5_2" - 1 1is sharp.

Proof. Given a complementary basis B’ we have

1

ay = ((8%)7'q), = det B%(k; q)/det BY |
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1
Since (-1)"det BY > 0 for all complementary bases generated by comple- j

mentary pivot method II, conditions (i) and (ii) are just a paraphrase
of the tests of the algorithm. The bound 2 5_2" - 1 is a consequence

of the fact that there are 2" complementary bases which (by Murty's

" ”

finiteness proof) cannot be repeated in the solution process. The

sharpness of the bound is shown by Murty's problem (-e(n), M(n)) . D H




6. Some connections with other literature,

In section 4, we established the correspondence between the numerical
examples of Murty and Fathi and the Gray code representations, gn(v) s Of
the integers v =10,1, ..., 2".1 . This sequence describes a hamil-
tonian path on the unit n-code.

As may be expected, there is a sizable literature on Gray codes
and related matters. We mention just a little of it here. Some papers
are concerned with Gray codes in bases other than 2 and conversions
between number systems. See [4], [6], and [8]. Other papers treat the
problem of describing paths on n-cubes. See [10], for example. The
latter are related to "snake-in-a-box" problems and codes. The Intro-
duction (in Volume I) and Bibliography (in Volume II) of the book [14]
by MacWilliams and Sloane is a rich source of references on this litera-
ture. See also [2].

By far the most amusing article on the subject of Gray codes is
the one by Martin Gardner [9] who points out that the binary Gray code
is the key to the solution of the Chinese ring puzzle and the well-
known Tower of Hanoi problem. To these may be added a recently-mar-
keted puzzle called "The Brain." It requires the solver to move a set
of eight rods from one extremal position (e.g., all "out") to the other
(a11 "in"). The puzzle is constructed in such a way that at any stage,
only two of the rods will move. It takes 170 moves to solve the puzzle,

for (in the notation of Section 2)

q(0) = (0, 0, 0, 0, 0, 0, 0, 0)




98(170)=(]!]!]’1,]’1,],]) .

Remembering that the papers by Murty and Fathi are concerned with
the computational complexity of complementary pivot methods and that
problems requiring 2 pivots are exhibited, one may ask whether
these have a connection with the Klee-Minty result [12] on the simplex
method of linear programming. In their paper, Klee and Minty devise
a class of linear programs in which the feasible region is a specially
perturbed unit n-cube . The objective function is just one coordinate,
and the simplex method with the customary pivot selection rules runs
through 2 pivots in finding the solution. In so doing, it
generates a hamiltonian path on the "cube" which can be associated in
a simple way with the path that arises from the Gray code. Their exam-
ple [12, p. 163] with ¢ = 0 and the coordinates of the vertices written

in reverse order illustrates this point. It is not clear (to the author

at least) that a stronger link between “hese phenomena can be found.

For the combinatorial theorist, an appealing question is: What
"solution paths" on the unit n-cube can be realized - through the
correspondence (3) - when a linear complementarity problem (q, M)
with M €P is solved by methods of the type discussed here?

Very recently, Stickney and Watson [18] have published a paper
focusing attention on Bard-type algorithms for the P-matrix case. For
a given problem (q, M) they define a directed graph G(M/q) whose
vertices correspond to cr .plementary bases of [I, -M] . The graph has
a directed edge from vertex A to vertex B 1if there exist an index

k €{1, ..., n} such that
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(1) (a7'q), <0 (34)
(ii) A'k € {I'k’ -M'k}\B’k {

(111) A =85, jtk.

°J

Clearly, the vertices of G(M/q) correspond to those of the unit n-cube

via (3). The edges of G(M/q) being defined by the conditions (34) are

just those of the unit n-cube apart from their orientation. That is,

when M €P , the total degree of a vertex in G(M/q) is n . See
[18, p. 324].
One of the main results of the Stickney-Watson paper is that when
M €P , a linear complementarity problem (q, M) with q belonging to
a complementary cone spanned by k columns of -M and n - k columns
of I can be solved by a sequence of k Bard-type pivots. Unfortunately,
in the general case, one still has no clue as to which Bard-type pivots

ought to be executed. Perhaps future studies will shed more light on

this. Clearly, for this insight to have practical algorithmic value,
it will be necessary to identify the "right" pivots without an excessive

amount of auxiliary work.

Stickney and Watson also comment on the problem of circling in

Bard-type algorithms and about the effect of scaling in this regard.

In view of the relationship between complementary bases and vertices
of the unit n-cube, and hence between principal pivoting algorithms

E | and paths on the unit n-cube, it is tempting to speculate about the
interpretation of these vertices (binary n-vectors) as encoded numbers.

In particular, can the sequence {B"} of complementary bases be chosen

in such a way that the corresponding sequence {c(B")} of binary
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n-vectors is strictly increasing in the sense of some binary number

system? If so, this might be a way to avoid circling.
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algorithm [15] grows exponentially with the problem size (number of
variables). In this paper we consider the sequences of complementary bases
that arise as these problems are solved by the aforementioned algorithms.

There is a natural correspondence between these bases and binary n-vectors

through which the basis sequences can be identified with particular hamiltonian

paths on the unit n-cube and with the binary Gray code representations of the

integers from 0 to S LUBE, B
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